Saturday, December 6, 2014

Ethernet


Both the Internet and ATM were designed for wide area networking. However, many companies, universities, and other organizations have large numbers of computers that must be connected. This need gave rise to the local area network. In this section we will say a little bit about the most popular LAN, Ethernet.

The story starts out in pristine Hawaii in the early 1970s. In this case, ''pristine'' can be interpreted as ''not having a working telephone system.'' While not being interrupted by the phone all day long makes life more pleasant for vacationers, it did not make life more pleasant for researcher Norman Abramson and his colleagues at the University of Hawaii who were trying to connect users on remote islands to the main computer in Honolulu. Stringing their own cables under the Pacific Ocean was not in the cards, so they looked for a different solution.
The one they found was short-range radios. Each user terminal was equipped with a small radio having two frequencies: upstream (to the central computer) and downstream (from the central computer). When the user wanted to contact the computer, it just transmitted a packet containing the data in the upstream channel. If no one else was transmitting at that instant, the packet probably got through and was acknowledged on the downstream channel. If there was contention for the upstream channel, the terminal noticed the lack of acknowledgement and tried again. Since there was only one sender on the downstream channel (the central computer), there were never collisions there. This system, called ALOHANET, worked fairly well under conditions of low traffic but bogged down badly when the upstream traffic was heavy.
About the same time, a student named Bob Metcalfe got his bachelor's degree at M.I.T. and then moved up the river to get his Ph.D. at Harvard. During his studies, he was exposed to Abramson's work. He became so interested in it that after graduating from Harvard, he decided to spend the summer in Hawaii working with Abramson before starting work at Xerox PARC (Palo Alto Research Center). When he got to PARC, he saw that the researchers there had designed and built what would later be called personal computers. But the machines were isolated. Using his knowledge of Abramson's work, he, together with his colleague David Boggs, designed and implemented the first local area network (Metcalfe and Boggs, 1976).
They called the system Ethernet after the luminiferous ether, through which electromagnetic radiation was once thought to propagate. (When the 19th century British physicist James Clerk Maxwell discovered that electromagnetic radiation could be described by a wave equation, scientists assumed that space must be filled with some ethereal medium in which the radiation was propagating. Only after the famous Michelson-Morley experiment in 1887 did physicists discover that electromagnetic radiation could propagate in a vacuum.)
The transmission medium here was not a vacuum, but a thick coaxial cable (the ether) up to 2.5 km long (with repeaters every 500 meters). Up to 256 machines could be attached to the system via transceivers screwed onto the cable. A cable with multiple machines attached to it in parallel is called a multidrop cable. The system ran at 2.94 Mbps. A sketch of its architecture is given in Fig. 1-34. Ethernet had a major improvement over ALOHANET: before transmitting, a computer first listened to the cable to see if someone else was already transmitting. If so, the computer held back until the current transmission finished. Doing so avoided interfering with existing transmissions, giving a much higher efficiency. ALOHANET did not work like this because it was impossible for a terminal on one island to sense the transmission of a terminal on a distant island. With a single cable, this problem does not exist.
Despite the computer listening before transmitting, a problem still arises: what happens if two or more computers all wait until the current transmission completes and then all start at once? The solution is to have each computer listen during its own transmission and if it detects interference, jam the ether to alert all senders. Then back off and wait a random time before retrying. If a second collision happens, the random waiting time is doubled, and so on, to spread out the competing transmissions and give one of them a chance to go first.
The Xerox Ethernet was so successful that DEC, Intel, and Xerox drew up a standard in 1978 for a 10-Mbps Ethernet, called the DIX standard. With two minor changes, the DIX standard became the IEEE 802.3 standard in 1983.
Unfortunately for Xerox, it already had a history of making seminal inventions (such as the personal computer) and then failing to commercialize on them, a story told in Fumbling the Future (Smith and Alexander, 1988). When Xerox showed little interest in doing anything with Ethernet other than helping standardize it, Metcalfe formed his own company, 3Com, to sell Ethernet adapters for PCs. It has sold over 100 million of them.
Ethernet continued to develop and is still developing. New versions at 100 Mbps, 1000 Mbps, and still higher have come out. Also the cabling has improved, and switching and other features have been added. We will discuss Ethernet in detail in Chap. 4.
In passing, it is worth mentioning that Ethernet (IEEE 802.3) is not the only LAN standard. The committee also standardized a token bus (802.4) and a token ring (802.5). The need for three more-or-less incompatible standards has little to do with technology and everything to do with politics. At the time of standardization, General Motors was pushing a LAN in which the topology was the same as Ethernet (a linear cable) but computers took turns in transmitting by passing a short packet called a token from computer to computer. A computer could only send if it possessed the token, thus avoiding collisions. General Motors announced that this scheme was essential for manufacturing cars and was not prepared to budge from this position. This announcement notwithstanding, 802.4 has basically vanished from sight.
Similarly, IBM had its own favorite: its proprietary token ring. The token was passed around the ring and whichever computer held the token was allowed to transmit before putting the token back on the ring. Unlike 802.4, this scheme, standardized as 802.5, is still in use at some IBM sites, but virtually nowhere outside of IBM sites. However, work is progressing on a gigabit version (802.5v), but it seems unlikely that it will ever catch up with Ethernet. In short, there was a war between Ethernet, token bus, and token ring, and Ethernet won, mostly because it was there first and the challengers were not as good.

Related Posts

Ethernet
4/ 5
Oleh

Subscribe via email

Like the post above? Please subscribe to the latest posts directly via email.