Local Area Networks
Local area networks, generally called LANs, are privately-owned networks within a single building or campus of up to a few kilometers in size. They are widely used to connect personal computers and workstations in company offices and factories to share resources (e.g., printers) and exchange information. LANs are distinguished from other kinds of networks by three characteristics: (1) their size, (2) their transmission technology, and (3) their topology.LANs are restricted in size, which means that the worst-case transmission time is bounded and known in advance. Knowing this bound makes it possible to use certain kinds of designs that would not otherwise be possible. It also simplifies network management.
LANs may use a transmission technology consisting of a cable to which all the machines are attached, like the telephone company party lines once used in rural areas. Traditional LANs run at speeds of 10 Mbps to 100 Mbps, have low delay (microseconds or nanoseconds), and make very few errors. Newer LANs operate at up to 10 Gbps. In this book, we will adhere to tradition and measure line speeds in megabits/sec (1 Mbps is 1,000,000 bits/sec) and gigabits/sec (1 Gbps is 1,000,000,000 bits/sec).
Various topologies are possible for broadcast LANs. Figure 1-7 shows two of them. In a bus (i.e., a linear cable) network, at any instant at most one machine is the master and is allowed to transmit. All other machines are required to refrain from sending. An arbitration mechanism is needed to resolve conflicts when two or more machines want to transmit simultaneously. The arbitration mechanism may be centralized or distributed. IEEE 802.3, popularly called Ethernet, for example, is a bus-based broadcast network with decentralized control, usually operating at 10 Mbps to 10 Gbps. Computers on an Ethernet can transmit whenever they want to; if two or more packets collide, each computer just waits a random time and tries again later.
A second type of broadcast system is the ring. In a ring, each bit propagates around on its own, not waiting for the rest of the packet to which it belongs. Typically, each bit circumnavigates the entire ring in the time it takes to transmit a few bits, often before the complete packet has even been transmitted. As with all other broadcast systems, some rule is needed for arbitrating simultaneous accesses to the ring. Various methods, such as having the machines take turns, are in use. IEEE 802.5 (the IBM token ring), is a ring-based LAN operating at 4 and 16 Mbps. FDDI is another example of a ring network.
Broadcast networks can be further divided into static and dynamic, depending on how the channel is allocated. A typical static allocation would be to divide time into discrete intervals and use a round-robin algorithm, allowing each machine to broadcast only when its time slot comes up. Static allocation wastes channel capacity when a machine has nothing to say during its allocated slot, so most systems attempt to allocate the channel dynamically (i.e., on demand).
Dynamic allocation methods for a common channel are either centralized or decentralized. In the centralized channel allocation method, there is a single entity, for example, a bus arbitration unit, which determines who goes next. It might do this by accepting requests and making a decision according to some internal algorithm. In the decentralized channel allocation method, there is no central entity; each machine must decide for itself whether to transmit. You might think that this always leads to chaos, but it does not. Later we will study many algorithms designed to bring order out of the potential chaos.
Metropolitan Area Networks
A metropolitan area network, or MAN, covers a city. The best-known example of a MAN is the cable television network available in many cities. This system grew from earlier community antenna systems used in areas with poor over-the-air television reception. In these early systems, a large antenna was placed on top of a nearby hill and signal was then piped to the subscribers' houses.At first, these were locally-designed, ad hoc systems. Then companies began jumping into the business, getting contracts from city governments to wire up an entire city. The next step was television programming and even entire channels designed for cable only. Often these channels were highly specialized, such as all news, all sports, all cooking, all gardening, and so on. But from their inception until the late 1990s, they were intended for television reception only.
Starting when the Internet attracted a mass audience, the cable TV network operators began to realize that with some changes to the system, they could provide two-way Internet service in unused parts of the spectrum. At that point, the cable TV system began to morph from a way to distribute television to a metropolitan area network. To a first approximation, a MAN might look something like the system shown in Fig. 1-8. In this figure we see both television signals and Internet being fed into the centralized head end for subsequent distribution to people's homes. We will come back to this subject in Cable television is not the only MAN. Recent developments in high-speed wireless Internet access resulted in another MAN, which has been standardized as IEEE 802.16.
Wide Area Networks
A wide area network, or WAN, spans a large geographical area, often a country or continent. It contains a collection of machines intended for running user (i.e., application) programs. We will follow traditional usage and call these machines hosts. The hosts are connected by a communication subnet, or just subnet for short. The hosts are owned by the customers (e.g., people's personal computers), whereas the communication subnet is typically owned and operated by a telephone company or Internet service provider. The job of the subnet is to carry messages from host to host, just as the telephone system carries words from speaker to listener. Separation of the pure communication aspects of the network (the subnet) from the application aspects (the hosts), greatly simplifies the complete network design.In most wide area networks, the subnet consists of two distinct components: transmission lines and switching elements. Transmission lines move bits between machines. They can be made of copper wire, optical fiber, or even radio links. Switching elements are specialized computers that connect three or more transmission lines. When data arrive on an incoming line, the switching element must choose an outgoing line on which to forward them. These switching computers have been called by various names in the past; the name router is now most commonly used. Unfortunately, some people pronounce it ''rooter'' and others have it rhyme with ''doubter.'' Determining the correct pronunciation will be left as an exercise for the reader. (Note: the perceived correct answer may depend on where you live.)
In this model, shown in Fig. 1-9, each host is frequently connected to a LAN on which a router is present, although in some cases a host can be connected directly to a router. The collection of communication lines and routers (but not the hosts) form the subnet.
A short comment about the term ''subnet'' is in order here. Originally, its only meaning was the collection of routers and communication lines that moved packets from the source host to the destination host. However, some years later, it also acquired a second meaning in conjunction with network addressing (which we will discuss in Chap. 5). Unfortunately, no widely-used alternative exists for its initial meaning, so with some hesitation we will use it in both senses. From the context, it will always be clear which is meant.
In most WANs, the network contains numerous transmission lines, each one connecting a pair of routers. If two routers that do not share a transmission line wish to communicate, they must do this indirectly, via other routers. When a packet is sent from one router to another via one or more intermediate routers, the packet is received at each intermediate router in its entirety, stored there until the required output line is free, and then forwarded. A subnet organized according to this principle is called a store-and-forward or packet-switched subnet. Nearly all wide area networks (except those using satellites) have store-and-forward subnets. When the packets are small and all the same size, they are often called cells.
The principle of a packet-switched WAN is so important that it is worth devoting a few more words to it. Generally, when a process on some host has a message to be sent to a process on some other host, the sending host first cuts the message into packets, each one bearing its number in the sequence. These packets are then injected into the network one at a time in quick succession. The packets are transported individually over the network and deposited at the receiving host, where they are reassembled into the original message and delivered to the receiving process. A stream of packets resulting from some initial message is illustrated in Fig.
In this figure, all the packets follow the route ACE, rather than ABDE or ACDE. In some networks all packets from a given message must follow the same route; in others each packet is routed separately. Of course, if ACE is the best route, all packets may be sent along it, even if each packet is individually routed.
Routing decisions are made locally. When a packet arrives at router A,itis up to A to decide if this packet should be sent on the line to B or the line to C. How A makes that decision is called the routing algorithm. Many of them exist. We will study some of them in detail in Chap. 5.
Not all WANs are packet switched. A second possibility for a WAN is a satellite system. Each router has an antenna through which it can send and receive. All routers can hear the output from the satellite, and in some cases they can also hear the upward transmissions of their fellow routers to the satellite as well. Sometimes the routers are connected to a substantial point-to-point subnet, with only some of them having a satellite antenna. Satellite networks are inherently broadcast and are most useful when the broadcast property is important.
Wireless Networks
Digital wireless communication is not a new idea. As early as 1901, the Italian physicist Guglielmo Marconi demonstrated a ship-to-shore wireless telegraph, using Morse Code (dots and dashes are binary, after all). Modern digital wireless systems have better performance, but the basic idea is the same.
To a first approximation, wireless networks can be divided into three main categories:
- System interconnection.
- Wireless LANs.
- Wireless WANs.
In the simplest form, system interconnection networks use the master-slave paradigm of Fig. 1-11(a). The system unit is normally the master, talking to the mouse, keyboard, etc., as slaves. The master tells the slaves what addresses to use, when they can broadcast, how long they can transmit, what frequencies they can use, and so on. We will discuss Bluetooth in more detail in Chap. 4.
The next step up in wireless networking are the wireless LANs. These are systems in which every computer has a radio modem and antenna with which it can communicate with other systems. Often there is an antenna on the ceiling that the machines talk to, as shown in Fig. 1-11(b). However, if the systems are close enough, they can communicate directly with one another in a peer-to-peer configuration. Wireless LANs are becoming increasingly common in small offices and homes, where installing Ethernet is considered too much trouble, as well as in older office buildings, company cafeterias, conference rooms, and other places. There is a standard for wireless LANs, called IEEE 802.11, which most systems implement and which is becoming very widespread. We will discuss it in Chap. 4.
The third kind of wireless network is used in wide area systems. The radio network used for cellular telephones is an example of a low-bandwidth wireless system. This system has already gone through three generations. The first generation was analog and for voice only. The second generation was digital and for voice only. The third generation is digital and is for both voice and data. In a certain sense, cellular wireless networks are like wireless LANs, except that the distances involved are much greater and the bit rates much lower. Wireless LANs can operate at rates up to about 50 Mbps over distances of tens of meters. Cellular systems operate below 1 Mbps, but the distance between the base station and the computer or telephone is measured in kilometers rather than in meters. We will have a lot to say about these networks in Chap. 2.
In addition to these low-speed networks, high-bandwidth wide area wireless networks are also being developed. The initial focus is high-speed wireless Internet access from homes and businesses, bypassing the telephone system. This service is often called local multipoint distribution service. We will study it later in the book. A standard for it, called IEEE 802.16, has also been developed. We will examine the standard in Chap. 4.
Almost all wireless networks hook up to the wired network at some point to provide access to files, databases, and the Internet. There are many ways these connections can be realized, depending on the circumstances. For example, in Fig. 1-12(a), we depict an airplane with a number of people using modems and seat-back telephones to call the office. Each call is independent of the other ones. A much more efficient option, however, is the flying LAN of Fig. 1-12(b). Here each seat comes equipped with an Ethernet connector into which passengers can plug their computers. A single router on the aircraft maintains a radio link with some router on the ground, changing routers as it flies along. This configuration is just a traditional LAN, except that its connection to the outside world happens to be a radio link instead of a hardwired line.
Many people believe wireless is the wave of the future (e.g., Bi et al., 2001; Leeper, 2001; Varshey and Vetter, 2000) but at least one dissenting voice has been heard. Bob Metcalfe, the inventor of Ethernet, has written: ''Mobile wireless computers are like mobile pipeless bathrooms—portapotties. They will be common on vehicles, and at construction sites, and rock concerts. My advice is to wire up your home and stay there'' (Metcalfe, 1995). History may record this remark in the same category as IBM's chairman T.J. Watson's 1945 explanation of why IBM was not getting into the computer business: ''Four or five computers should be enough for the entire world until the year 2000.''
Home Networks
Home networking is on the horizon. The fundamental idea is that in the future most homes will be set up for networking. Every device in the home will be capable of communicating with every other device, and all of them will be accessible over the Internet. This is one of those visionary concepts that nobody asked for (like TV remote controls or mobile phones), but once they arrived nobody can imagine how they lived without them.Many devices are capable of being networked. Some of the more obvious categories (with examples) are as follows:
- Computers (desktop PC, notebook PC, PDA, shared peripherals).
- Entertainment (TV, DVD, VCR, camcorder, camera, stereo, MP3).
- Telecommunications (telephone, mobile telephone, intercom, fax).
- Appliances (microwave, refrigerator, clock, furnace, airco, lights).
- Telemetry (utility meter, smoke/burglar alarm, thermostat, babycam)..
Home networking has some fundamentally different properties than other network types. First, the network and devices have to be easy to install. The author has installed numerous pieces of hardware and software on various computers over the years, with mixed results. A series of phone calls to the vendor's helpdesk typically resulted in answers like (1) Read the manual, (2) Reboot the computer, (3) Remove all hardware and software except ours and try again, (4) Download the newest driver from our Web site, and if all else fails, (5) Reformat the hard disk and then reinstall Windows from the CD-ROM. Telling the purchaser of an Internet refrigerator to download and install a new version of the refrigerator's operating system is not going to lead to happy customers. Computer users are accustomed to putting up with products that do not work; the car-, television-, and refrigerator-buying public is far less tolerant. They expect products to work for 100% from the word go.
Second, the network and devices have to be foolproof in operation. Air conditioners used to have one knob with four settings: OFF, LOW, MEDIUM, and HIGH. Now they have 30-page manuals. Once they are networked, expect the chapter on security alone to be 30 pages. This will be beyond the comprehension of virtually all the users.
Third, low price is essential for success. People will not pay a $50 premium for an Internet thermostat because few people regard monitoring their home temperature from work that important. For $5 extra, it might sell, though.
Fourth, the main application is likely to involve multimedia, so the network needs sufficient capacity. There is no market for Internet-connected televisions that show shaky movies at 320 x 240 pixel resolution and 10 frames/sec. Fast Ethernet, the workhorse in most offices, is not good enough for multimedia. Consequently, home networks will need better performance than that of existing office networks and at lower prices before they become mass market items.
Fifth, it must be possible to start out with one or two devices and expand the reach of the network gradually. This means no format wars. Telling consumers to buy peripherals with IEEE 1394 (FireWire) interfaces and a few years later retracting that and saying USB 2.0 is the interface-of-the-month is going to make consumers skittish. The network interface will have to remain stable for many years; the wiring (if any) will have to remain stable for decades.
Sixth, security and reliability will be very important. Losing a few files to an e-mail virus is one thing; having a burglar disarm your security system from his PDA and then plunder your house is something quite different.
An interesting question is whether home networks will be wired or wireless. Most homes already have six networks installed: electricity, telephone, cable television, water, gas, and sewer. Adding a seventh one during construction is not difficult, but retrofitting existing houses is expensive. Cost favors wireless networking, but security favors wired networking. The problem with wireless is that the radio waves they use are quite good at going through fences. Not everyone is overjoyed at the thought of having the neighbors piggybacking on their Internet connection and reading their e-mail on its way to the printer. In Chap. 8 we will study how encryption can be used to provide security, but in the context of a home network, security has to be foolproof, even with inexperienced users. This is easier said than done, even with highly sophisticated users.
In short, home networking offers many opportunities and challenges. Most of them relate to the need to be easy to manage, dependable, and secure, especially in the hands of nontechnical users, while at the same time delivering high performance at low cost.
Internetworks
Many networks exist in the world, often with different hardware and software. People connected to one network often want to communicate with people attached to a different one. The fulfillment of this desire requires that different, and frequently incompatible networks, be connected, sometimes by means of machines called gateways to make the connection and provide the necessary translation, both in terms of hardware and software. A collection of interconnected networks is called an internetwork or internet. These terms will be used in a generic sense, in contrast to the worldwide Internet (which is one specific internet), which we will always capitalize.A common form of internet is a collection of LANs connected by a WAN. In fact, if we were to replace the label ''subnet'' in Fig. 1-9 by ''WAN,'' nothing else in the figure would have to change. The only real technical distinction between a subnet and a WAN in this case is whether hosts are present. If the system within the gray area contains only routers, it is a subnet; if it contains both routers and hosts, it is a WAN. The real differences relate to ownership and use.
Subnets, networks, and internetworks are often confused. Subnet makes the most sense in the context of a wide area network, where it refers to the collection of routers and communication lines owned by the network operator. As an analogy, the telephone system consists of telephone switching offices connected to one another by high-speed lines, and to houses and businesses by low-speed lines. These lines and equipment, owned and managed by the telephone company, form the subnet of the telephone system. The telephones themselves (the hosts in this analogy) are not part of the subnet. The combination of a subnet and its hosts forms a network. In the case of a LAN, the cable and the hosts form the network. There really is no subnet.
An internetwork is formed when distinct networks are interconnected. In our view, connecting a LAN and a WAN or connecting two LANs forms an internetwork, but there is little agreement in the industry over terminology in this area. One rule of thumb is that if different organizations paid to construct different parts of the network and each maintains its part, we have an internetwork rather than a single network. Also, if the underlying technology is different in different parts (e.g., broadcast versus point-to-point), we probably have two networks.
Network Software
The first computer networks were designed with the hardware as the main concern and the software as an afterthought. This strategy no longer works. Network software is now highly structured. In the following sections we examine the software structuring technique in some detail. The method described here forms the keystone of the entire book and will occur repeatedly later on.
Networking Types
4/
5
Oleh
Unknown